Para-valvular Regurgitation after TAVR – The Next "Big Thing"? Impact on Clinical Outcomes and Treatment

Susheel Kodali, MD

Co-Director, Heart Valve Center Columbia University New York, NY

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial Interest /arrangement or affiliation with the organization(s) listed below

Affiliation/Financial Relationship

- Consulting Fees/Honoraria
- Advisory Board/Equity

Company

- Edwards Lifesciences, St. Jude Medical, Paieon Medical
- Thubrikar Aortic Valve, Inc

Paravalvular AR and In-Hospital Mortality German Registry

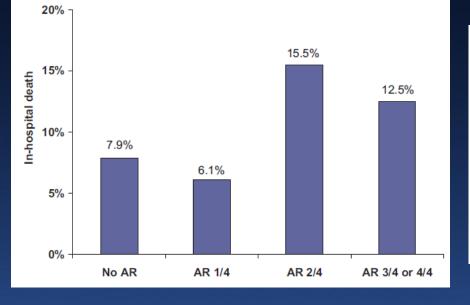


Table 6Multivariate predictors of the occurrence of at least moderatepost-procedural AR (c=0.74)

	OR (95% CI)	p Value
Aortic valve area (per cm ²)	0.10 (0.02 to 0.41)	0.001
Cardiogenic shock	1.94 (1.18 to 3.21)	0.009
Annulus estimation by TOE	1.94 (1.14 to 3.29)	0.01
Renal failure	0.53 (0.33 to 0.85)	0.01
Male gender	1.80 (1.07 to 3.06)	0.02
Bicuspid aortic valve	2.95 (0.73 to 11.89)	0.12
Corevalve prosthesis	1.58 (0.73 to 3.40)	0.25

AR, aortic regurgitation; TOE, transoesophageal echocardiography.

Abdel-Wahab et al. Heart, 97:889; 2011

Paravalvular AR and Long Term Mortality Italian Registry

Incidence and Predictors of Early and Late Mortality After Transcatheter Aortic Valve Implantation in 663 Patients With Severe Aortic Stenosis

Corrado Tamburino, MD, PhD; Davide Table 4. Multivariate Analysis

Anna Sonia Petronio, MD; Federica Ettori, M France

esco Bedogni, MD; Francesco Maisano, David Antoniucci, MD; Massimo Nar Claudia Fiorina, MD	Overall mortality Intraprocedural stroke Pre-procedural mitral regurgitation 3+ or 4+ Systolic pulmonary artery pressure >60 mm Hg Prior acute pulmonary edema Diabetes mellitus	15.76 4.62 3.21 2.75 2.45	3.27 1.66 1.19 1.32 1.19	75.90 12.87 8.71 5.72 5.07	0.001 0.003 0.02 0.007 0.02
e mortality					
Prior stroke	5.468	1.47	20.39		0.01
Post-procedural paravalvular leak ≥2+	3.785	1.57	9.10		0.003
Prior acute pulmonary edema	2.696	1.09	6.68		0.03
Chronic kidney disease	2.532	1.01	6.35		0.048
	Post-procedural paravalvular leak ≥2+ Prior acute pulmonary edema	3.785 2.696	1.57 1.09	9.10 6.68	0.003 0.03

Hazard Ratio

2 5 9 2

95% LCL

1.01

95% UCL

6.35

P Value

0.048

LCL indicates lower confidence limit; UCL indicates upper confidence limit.

Postprocedural paravalvular leak \geq 2 (HR 3.79), was an independent predictors of mortality between 30 days and 1 year.

Chronic kidney disease

Tamburino C et al. Circ 2011:123 (3): 299-308.

COLUMBIA UNIVERSITY MEDICAL CENTER - NewYork-Presbyterian

Paravalvular AR and Long Term Mortality UK Registry

Long-Term Outcomes After Transcatheter Aortic Valve Implantation in High-Risk Patients With Severe Aortic Stenosis

The U.K. TAVI (United Kingdom Transcatheter Aortic Valve Implantat: JACC Vol. 58, No. 20, 2011

Neil E. Moat, MBBS, MS,* Peter Ludman, M/ Ben Bridgewater, PHD,§ An Martyn Thomas, MD,¶ Jan Olaf Wendler, MD, PHD,** Uday Trivedi, MBBS, †† Da Stephen J. D. Brecker, MD Huon Gray, MD,## Michae

AR moderate/severe

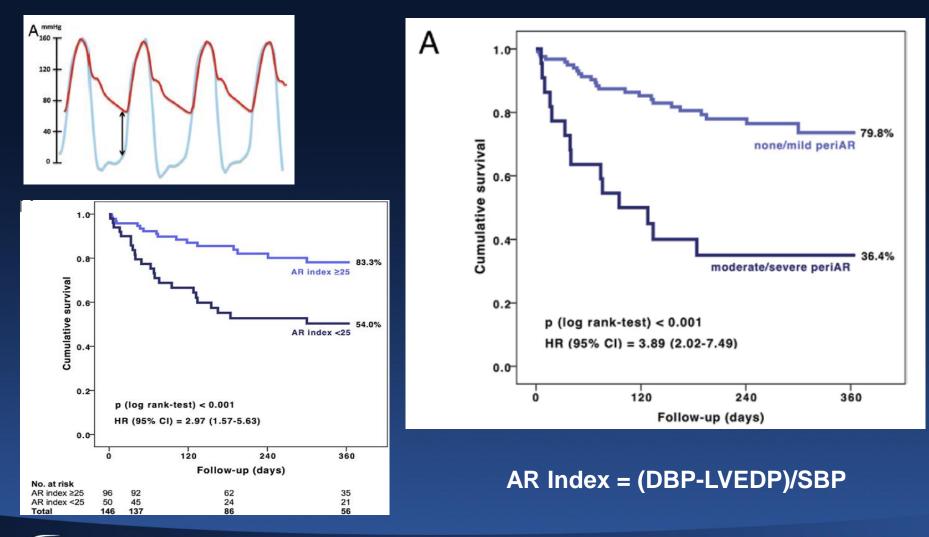
November 8, 2011:2130-8

2135 Moat et al. The U.K. TAVI Registry Long-Term Outcomes

Andrew D. Cunningh	Table 3 Predictors of	Mortality at 1 Year					
n Kovac, MD,# Tom							
** David Hildick-Smi	Variables	Alive $(n = 684)$	Dead (n = 186)	Univariate Model	p Value	Multivariate Model	p Value
Daniel J. Blackman, N	Edwards SAPIEN	321/680 (47.2)	89/182 (48.9)	1.00			
	Medtronic CoreValve	359/680 (52.8)	93/182 (51.1)	0.95 (0.70-1.29)	0.75		
D,§§ Andreas Baumb	Route, other	196/684 (28.7)	75/186 (40.3)	1.00			
ael J. Mullen, MBBS	Route, transfemoral	488/684 (71.3)	111/186 (59.7)	0.65 (0.48-0.88)	0.006	0.73 (0.52-1.04)	0.08
	AR moderate/severe	83/674 (12.3)	32/175 (18.3)	1.49 (1.00-2.21)	0.048	1.66 (1.10-2.51)	0.016
	Major vascular complication	39/684 (5.7)	16/185 (8.7)	1.42 (0.82-2.45)	0.21		
	Permanent pacemaker	108/683 (15.8)	33/184 (17.9)	1.21(0.83-1.77)	0.32		
	Male	355/684 (59.9)	101/186 (54.3)	1.19 (0.88-1.61)	0.25		
	Age, yrs	81.8 ± 7.3	82.3 ± 6.4	1.01 (0.99-1.03)	0.52		
	Age, 313			,			
83,	/674 (12.3)	32/175 (18.3)		.00-2.21)	0.048	1.66 (1.	.10-2.51)
83						1.66 (1.	. 10-2.51) _{0.06}
83	/674 (12.3)	32/175 (18.3)	1.49 (1	.00-2.21)	0.048		
83,	/674 (12.3) LVEF <30%	32/175 (18.3) 52/680 (7.6)	1.49 (1 22/185 (11.9)	1.89 (1.16-3.07)	0.048		
83	/674 (12.3) LVEF <30% NYHA functional class I/II	32/175 (18.3) 52/680 (7.6) 160/680 (23.5)	1.49 (1 22/185 (11.9) 39/186 (21.0)	1.89 (1.16-3.07) 1.00	0.048		
83	/674 (12.3) LVEF <30% NYHA functional class I/II NYHA functional class III/IV	32/175 (18.3) 52/680 (7.6) 160/680 (23.5) 520/680 (76.5)	1.49 (1 22/185 (11.9) 39/186 (21.0) 147/186 (79.0)	1.89 (1.16-3.07) 1.00 1.14 (0.79-1.63)	0.048 0.01 0.50	1.65 (0.98-2.79)	0.06
83	/674 (12.3) LVEF <30% NYHA functional class I/II NYHA functional class III/IV Coronary disease	32/175 (18.3) 52/680 (7.6) 160/680 (23.5) 520/680 (76.5) 301/653 (46.1)	1.49 (1 22/185 (11.9) 39/186 (21.0) 147/186 (79.0) 93/175 (53.1)	1.89 (1.16-3.07) 1.00 1.14 (0.79-1.63) 1.38 (1.01-1.87)	0.048 0.01 0.50 0.04	1.65 (0.98-2.79)	0.06
83	/674 (12.3) LVEF <30% NYHA functional class I/II NYHA functional class III/IV Coronary disease Any previous cardiac surgery	32/175 (18.3) 52/680 (7.6) 160/680 (23.5) 520/680 (76.5) 301/653 (46.1) 202/667 (30.3)	1.49 (1 22/185 (11.9) 39/186 (21.0) 147/186 (79.0) 93/175 (53.1) 57/186 (30.7)	1.89 (1.16-3.07) 1.00 1.14 (0.79-1.63) 1.38 (1.01-1.87) 1.04 (0.75-1.43)	0.048 0.01 0.50 0.04 0.83	1.65 (0.98-2.79)	0.06
83	/674 (12.3) LVEF <30% NYHA functional class I/II NYHA functional class III/IV Coronary disease Any previous cardiac surgery PVD	32/175 (18.3) 52/680 (7.6) 160/680 (23.5) 520/680 (76.5) 301/653 (46.1) 202/667 (30.3) 179/654 (27.4)	1.49 (1 22/185 (11.9) 39/186 (21.0) 147/186 (79.0) 93/175 (53.1) 57/186 (30.7) 62/178 (34.8)	1.89 (1.16-3.07) 1.00 1.14 (0.79-1.63) 1.38 (1.01-1.87) 1.04 (0.75-1.43) 1.28 (0.91-1.75)	0.048 0.01 0.50 0.04 0.83 0.16	1.65 (0.98-2.79)	0.06
83	/674 (12.3) LVEF <30% NYHA functional class I/II NYHA functional class III/IV Coronary disease Any previous cardiac surgery PVD Diabetes mellitus	32/175 (18.3) 52/680 (7.6) 160/680 (23.5) 520/680 (76.5) 301/653 (46.1) 202/667 (30.3) 179/654 (27.4) 146/675 (21.6)	1.49 (1 22/185 (11.9) 39/186 (21.0) 147/186 (79.0) 93/175 (53.1) 57/186 (30.7) 62/178 (34.8) 50/136 (26.9)	1.89 (1.16-3.07) 1.00 1.14 (0.79-1.63) 1.38 (1.01-1.87) 1.04 (0.75-1.43) 1.28 (0.91-1.75) 1.36 (0.98-1.89)	0.048 0.01 0.50 0.04 0.83 0.16 0.07	1.65 (0.98-2.79) 1.23 (0.88-1.73)	0.06

Values are n/N (%), mean ± SD, or hazard ratio (95% confidence interval)

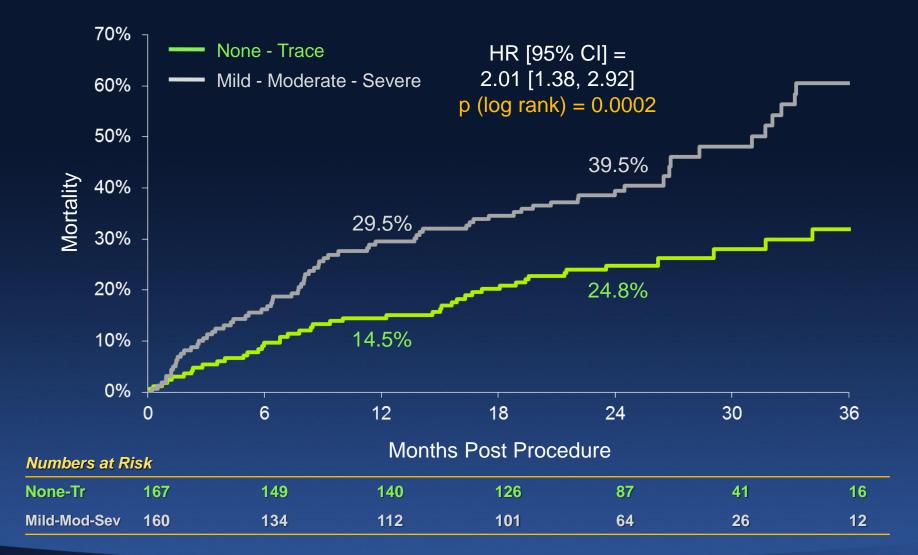
CI = confidence interval; HR = hazard ratio; other abbreviations as in Tables 1 and 2.


J Am Coll Cardiol 2011;58:2130–8)

COLUMBIA UNIVERSITY MEDICAL CENTER

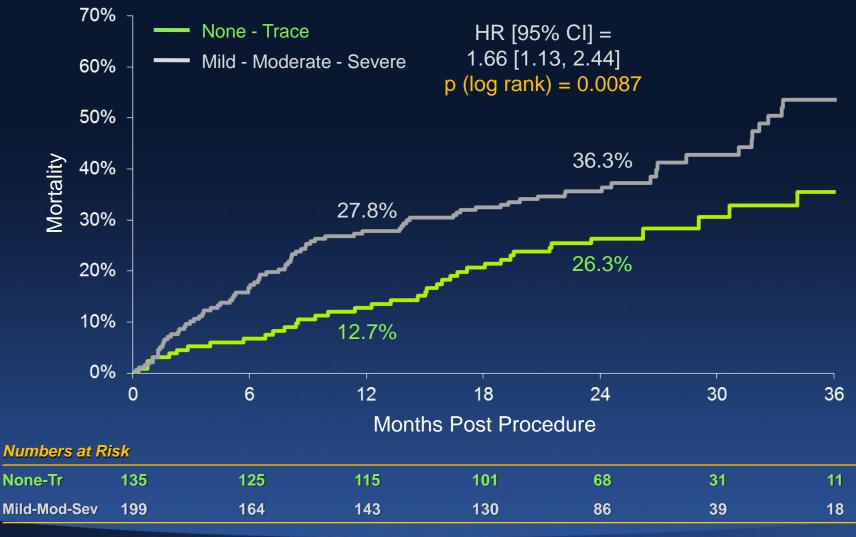
NewYork-Presbyterian

Clinical Impact of Severity of Paravalvular Regurgitation Corroborated by Invasive Index



CARDIOVASCULAR RESEARCH FOUNDATION A Passion for Innovation

Sinning et al. JACC, 59:1134-41; 2012


Paravalvular AR and Mortality PARTNER Trial – Cohort A

Columbia University Medical Center

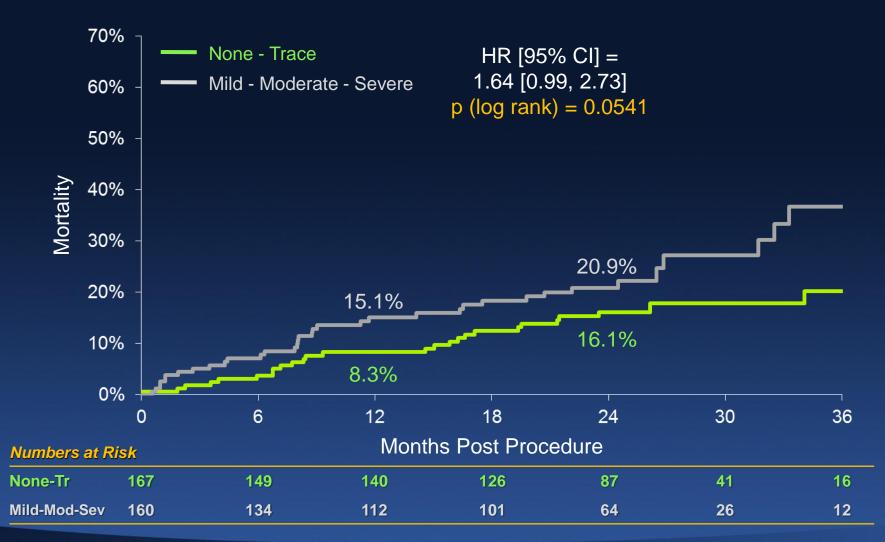
Total AR and Mortality PARTNER Trial – Cohort A

Columbia University Medical Center

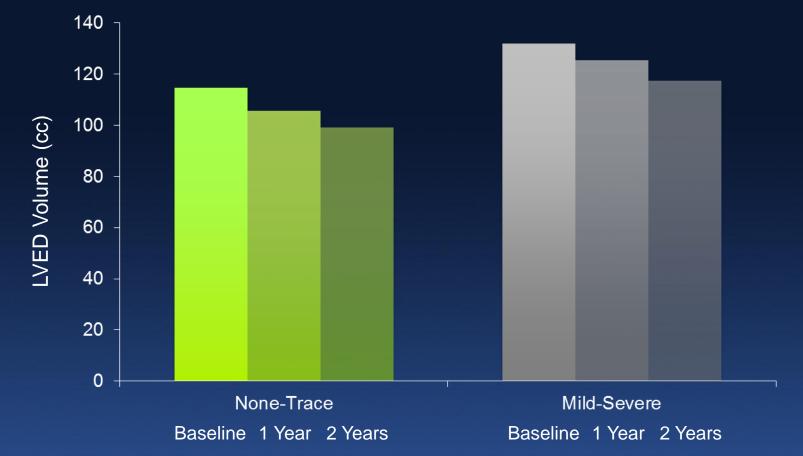
Total AR and Mortality PARTNER Trial – Cohort A

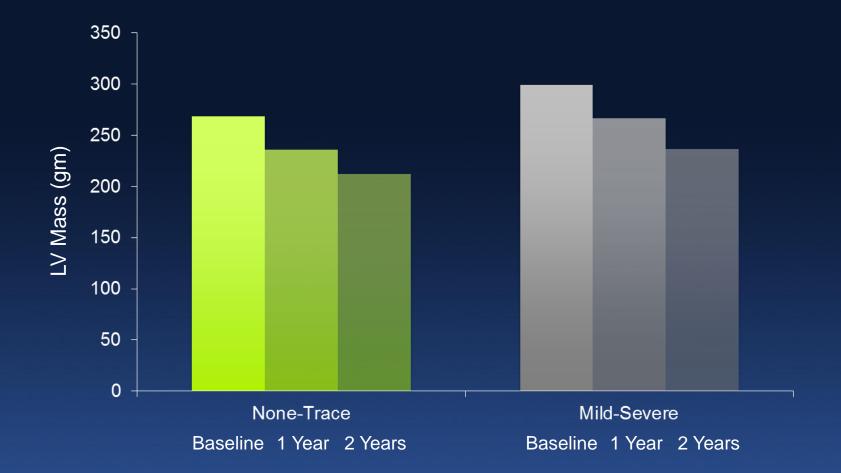
CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation

Columbia University Medical Center

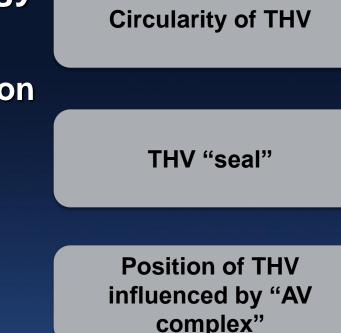

Baseline Echo Characteristics Stratified by PVL

Characteristic	None-Trace PVL	Mild-Severe PVL	p-value
Baseline AVA (cm²)	0.65	0.67	0.31
Baseline LV Mass (gm)	268.4 ± 84.7	299.5 ± 81.4	<0.02
Baseline LV Diastolic Volume (cc)	114.8 ± 46.3	132.1 ± 49.4	0.07
Baseline LV Ejection Fraction (%)	51.1	54.0	0.06


PVL Severity and Cardiovascular Mortality TAVR Patients (AT)

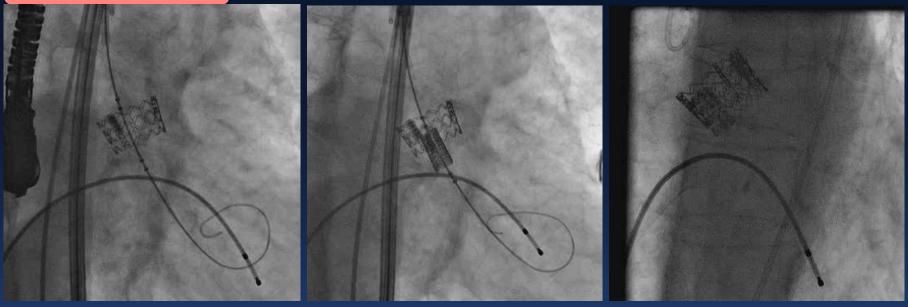

LVED Volume Changes Stratified by Post-Procedure PVL

LV Mass Changes Stratified by Post-Procedure PVL



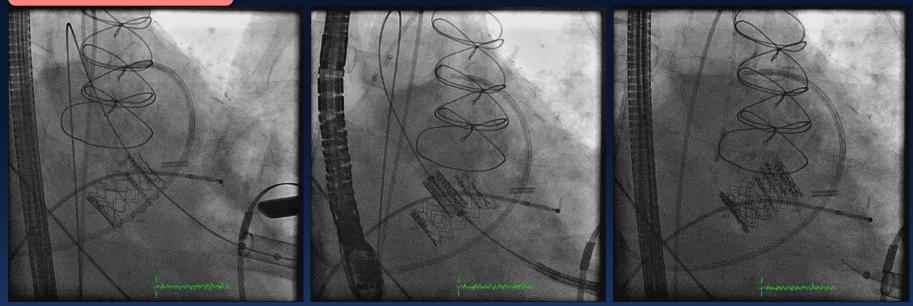
Treatment of AR Depends on the Etiology

- Native Aortic valve morphology
 - Number of cusps
 - Symmetry/severity of calcification
- Undersizing of the THV
 - Annular measurement
- Malpositioning of the THV
 - Aortic root morphology
 - Mitral valve calcification
 - Sigmoid septum



Significant Paravalvular Aortic Regurgitation Valve Malposition

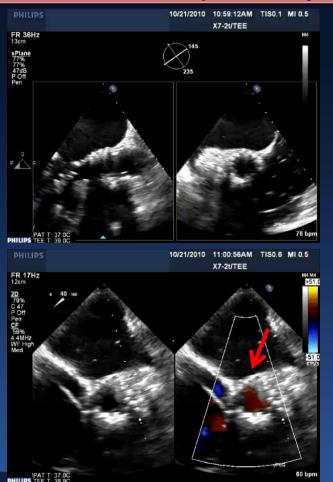
Valve too high

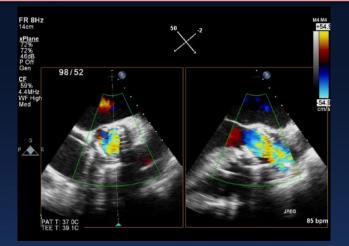

- THV not stable in the aortic annulus Management
- Pressors to stabilize hemodynamics
- CPB likely not useful
- Valve-in-valve procedure should be performed immediately

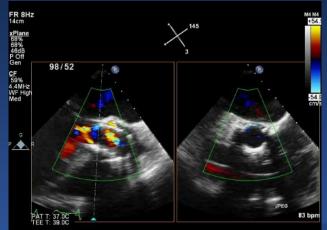
Significant Paravalvular Aortic Regurgitation Valve Malposition

Valve too low

If significant paravalvular jets (flow through struts) are created due to valve malpositioning, consider implanting a second THV Management

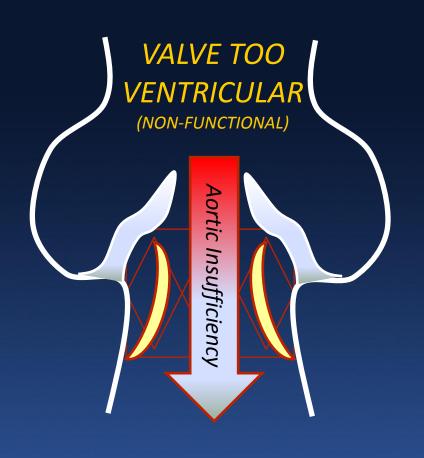

- Pressors to stabilize hemodynamics
- CPB likely not useful
- Valve-in-valve procedure should be performed immediately





Post-Implantation: Assess THV Function

Severe central aortic regurgitation should raise the possibility of primary THV failure

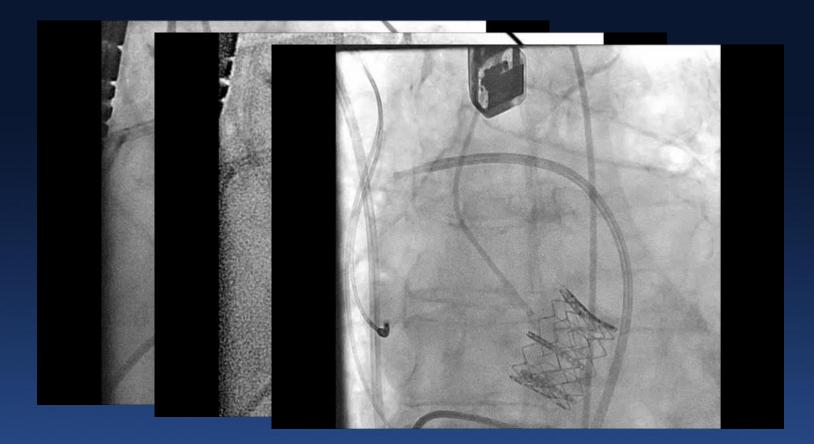


Columbia University Medical Center

- NewYork-Presbyterian

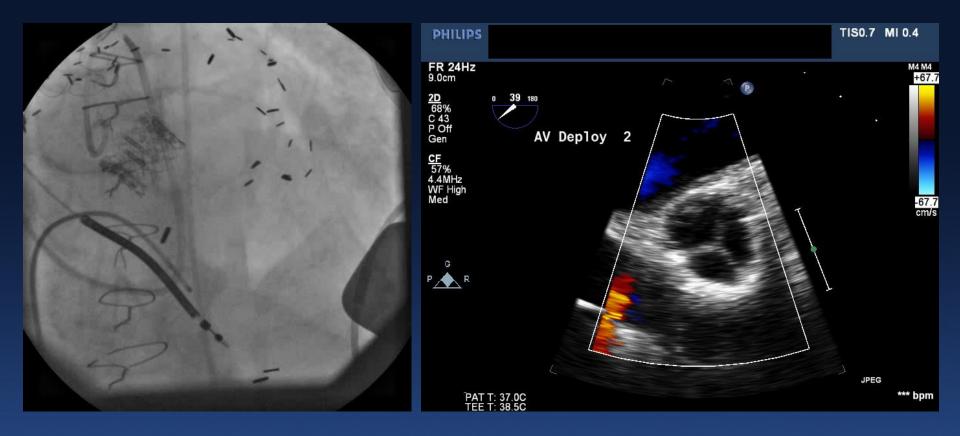
CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation

Significant Central Aortic Regurgitation


Management

- Evaluate echo closely to determine etiology – frozen leaflet vs leaflet overhang
- Mechanical manipulation of the leaflet with a diagnostic catheter, if frozen leaflet
- Prepare another valve (valvein-valve procedure) simultaneously
- Mechanical support not very useful with severe AR
- Convert to open-heart surgery?

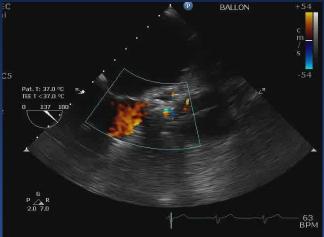
Significant Central Aortic Regurgitation THV Leaflet Manipulation with Catheter



22

Significant Central Aortic Regurgitation Valve in Valve

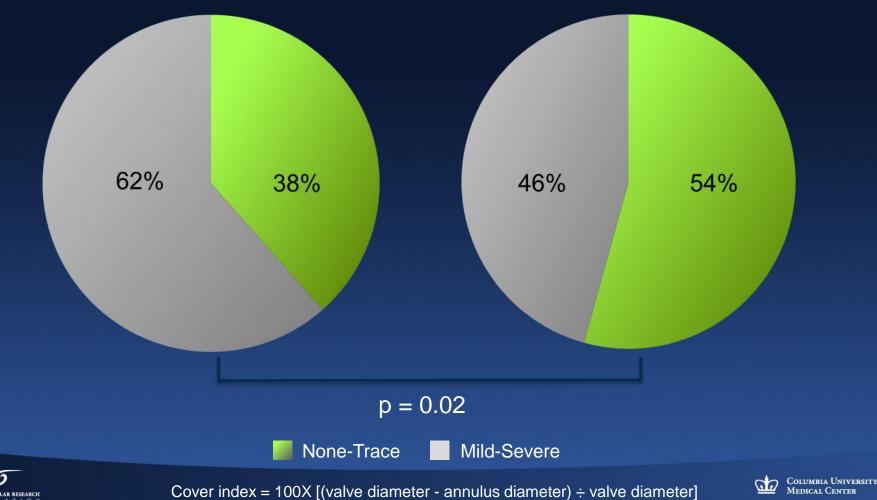
Significant Paravalvular Aortic Regurgitation Size Mismatch


Size Mismatch

- Severe paravalvular leak following implantation in large annulus
- Proper valve sizing is CRITICAL to avoid mismatch and severe PV leak

Management

- Pressors to stabilize hemodynamics
- If patient unstable, consider surgical AVR
- Cannot put larger valve inside of smaller valve



Paravalvular Leak by Cover Index PARTNER Trial – Cohort A

< 8%


≥8%

- NewYork-Presbyterian

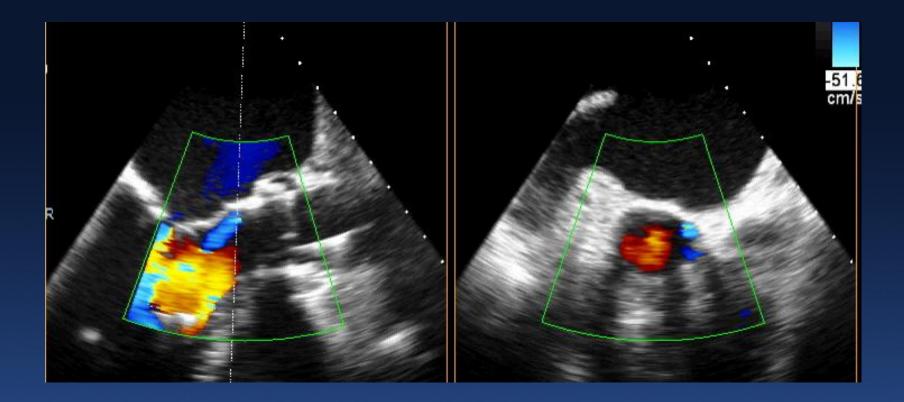
Valve Undersizing

2D TEE (22 mm) CT (22×28 mm) TEE Post

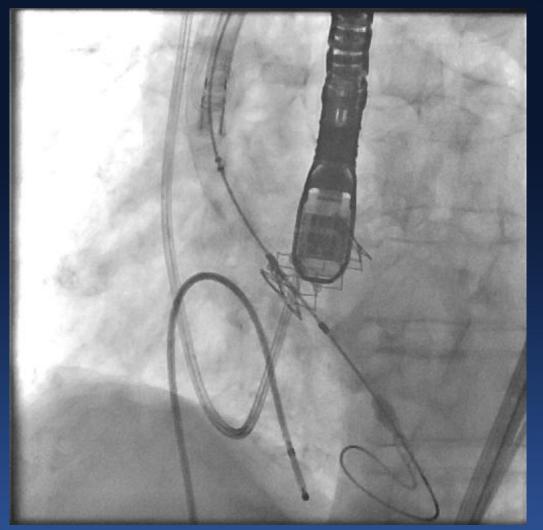


3D Imaging is Key!

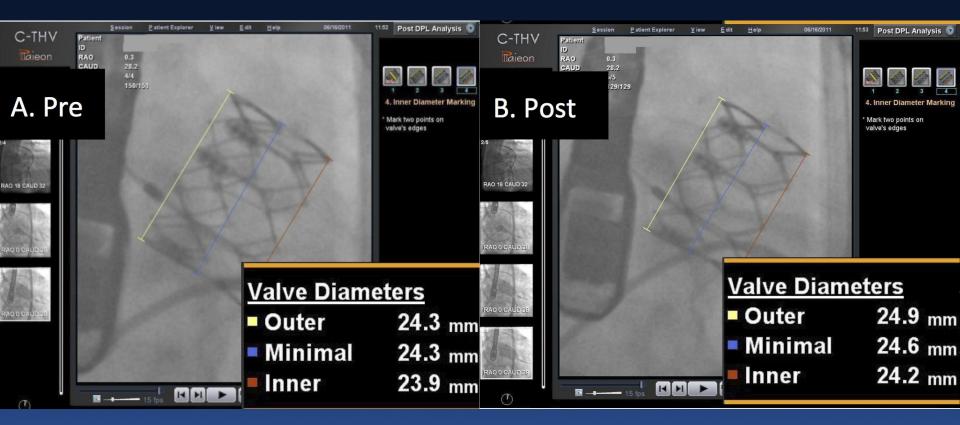
3D TEE


Average annular diameter = circumference / π

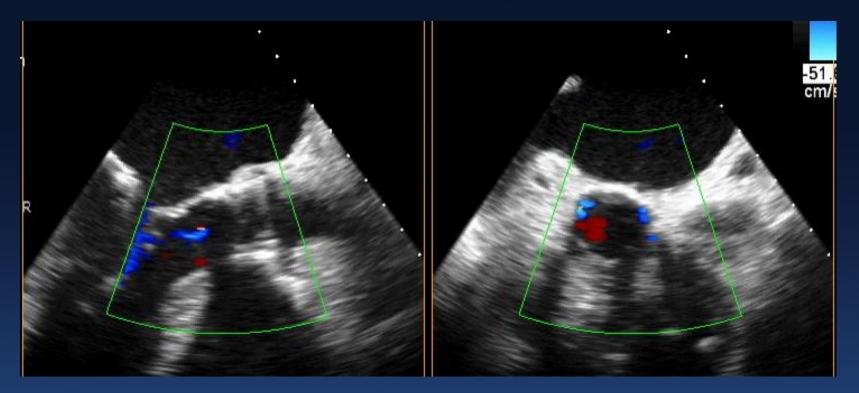
Oversize average annular diameter by 1 mm


Role of Balloon Post-Dilatation Case example

Role of Balloon Post-Dilatation Case example



Balloon post-dilatation performed with addition of 1cc to delivery catheter


Additional stent expansion after PD

Role of Balloon Post-Dilatation Case example

Risk

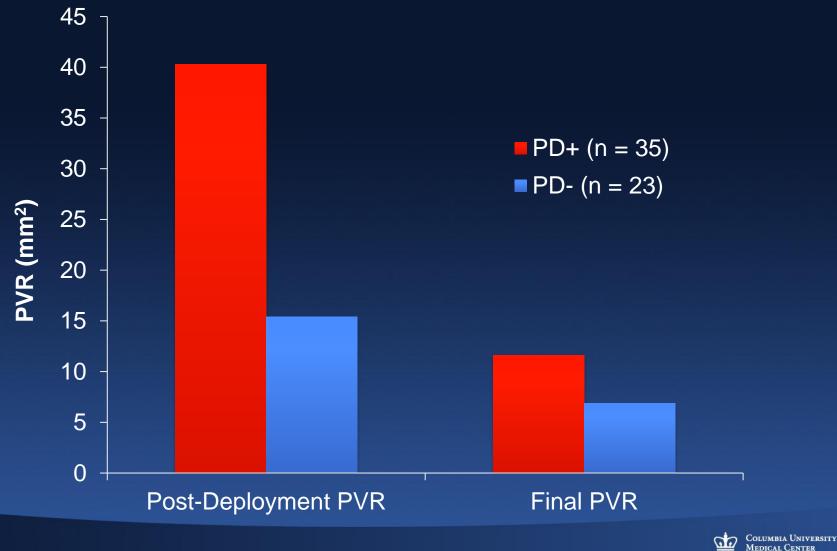
Benefit

- Central AR
- Aortic trauma
- Embolic complications

- Reduce paravalvular AR
- Improved THV shape/hemodynamics

Baseline characteristics

	Post dilatation $N = 106$	No Post dilatation N =153	P value
Male gender	67%	40%	<0.001
Age (year)	85.4 ± 8.0	85.8 ± 7.3	0.66
STS score	10.7 ± 4.6	12.1 ± 4.4	0.01
Weight (kg)	73.0 ± 17.3	66.1 ± 17.2	0.002
Height (cm)	167.8 ± 11.3	160.6 ± 10.8	<0.001
BMI	25.8 ± 5.3	25.6 ± 6.4	0.76
BSA (m ²)	1.75 ± 0.42	1.66 ± 0.30	0.06


Echocardiographic characteristics

	Post dilatation $N = 106$	No Post dilatation N =153	P value
Ejection fraction (%)	47.0 ± 16.2	50.2 ± 14.4	0.11
AVA (cm ²)	0.61 ± 0.17	0.58 ± 0.17	0.08
AVA index (cm²/m²)	0.34 ± 0.09	0.34 ± 0.09	0.73
Mean aortic gradient (mmHg)	45.5 ± 12.1	46.4 ± 14.2	0.59
Annulus diameter - TEE (mm)	23.3 ± 1.8	22.0 ± 1.9	< 0.001
Cover-index	7.4 ± 4.8	10.2 ± 5.1	< 0.001

PVR Decreased by Post-Dilatation

- NewYork-Presbyterian

Clinical Outcomes

	Post dilatation N = 106	No Post dilatation N =153	OR (95%CI)	P value
30-day mortality	2 (1.9%)	11 (7.2%)	0.25 (0.05-1.14)	0.06
30-day cardiac mortality In-hospital cerebrovascular events	1 (0.9%)	6 (3.9%)	0.23 (0.03-1.97)	0.25
All stroke or TIA	5 (4.7%)	2 (1.3%)	3.74 (0.71-19.64)	0.13
All stroke	4 (3.8%)	1 (0.7%)	5.96 (0.66-54.10)	0.16
Aortic dissection	1 (0.9%)	1 (0.7%)	1.45 (0.09-23.4)	1.00
Aortic wall hematoma	1 (0.9%)	3 (2.0%)	0.48 (0.05-4.64)	0.65
PPM implantation during index hospitalization	6 (5.7%)	13 (8.5%)	0.65 (0.24-1.76)	0.39

Clinical Outcomes

	Post dilatation N = 106	No Post dilatation N =153	OR (95%CI)	P value
30-day mortality	2 (1.9%)	11 (7.2%)	0.25 (0.05-1.14)	0.06
30-day cardiac mortality In-hospital cerebrovascular events	1 (0.9%)	6 (3.9%)	0.23 (0.03-1.97)	0.25
All stroke or TIA	5 (4.7%)	2 (1.3%)	3.74 (0.71-19.64)	0.13
All stroke	4 (3.8%)	1 (0.7%)	5.96 (0.66-54.10)	0.16
Aortic dissection	1 (0.9%)	1 (0.7%)	1.45 (0.09-23.4)	1.00
Aortic wall hematoma	1 (0.9%)	3 (2.0%)	0.48 (0.05-4.64)	0.65
PPM implantation during index hospitalization	6 (5.7%)	13 (8.5%)	0.65 (0.24-1.76)	0.39

Clinical Outcomes

	Post dilatation N = 106	No Post dilatation N =153	OR (95%CI)	P value
30-day mortality	2 (1.9%)	11 (7.2%)	0.25 (0.05-1.14)	0.06
30-day cardiac mortality In-hospital cerebrovascular events	1 (0.9%)	6 (3.9%)	0.23 (0.03-1.97)	0.25
All stroke or TIA	5 (4.7%)	2 (1.3%)	3.74 (0.71-19.64)	0.13
All stroke	4 (3.8%)	1 (0.7%)	5.96 (0.66-54.10)	0.16
Aortic dissection	1 (0.9%)	1 (0.7%)	1.45 (0.09-23.4)	1.00
Aortic wall hematoma	1 (0.9%)	3 (2.0%)	0.48 (0.05-4.64)	0.65
PPM implantation during index hospitalization	6 (5.7%)	13 (8.5%)	0.65 (0.24-1.76)	0.39

JACC: CARDIOVASCULAR INTERVENTIONS © 2012 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC. VOL. XX, NO. X, 2012 ISSN 1936-8798/\$36.00 DOI: 10.1016/j.jcin.2012.02.010

CLINICAL STUDIES

Predictive Factors, Efficacy, and Safety of Balloon Post-Dilation Following Transcatheter Aortic Valve Implantation With a Balloon-Expandable Valve

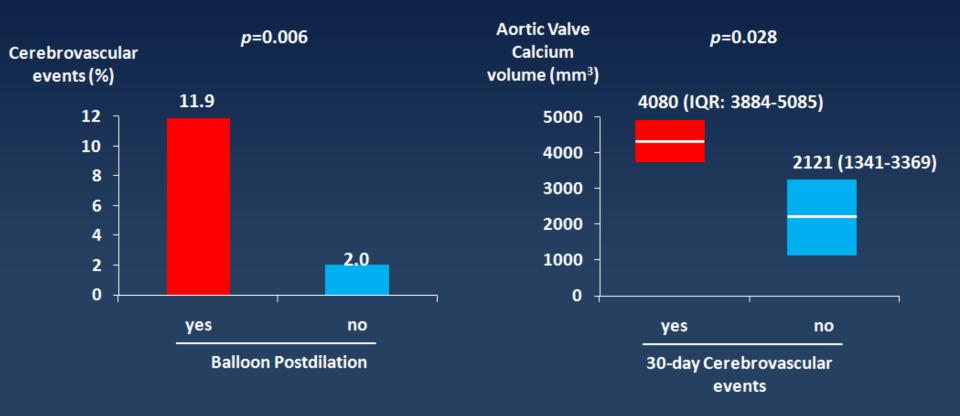
Luis Nombela-Franco, MD, Josep Rodés-Cabau, MD, Robert Delarochellière, MD, Eric Larose, MD, Daniel Doyle, MD, Jacques Villeneuve, MD, Sébastien Bergeron, MD, Mathieu Bernier, MD, Ignacio Amat-Santos, MD, Michael Mok, MD, Marina Urena, MD, Michel Rheault, MD, Jean Dumesnil, MD, Mélanie Côté, MSC, Philippe Pibarot, PHD, Eric Dumont, MD

Quebec City, Quebec, Canada

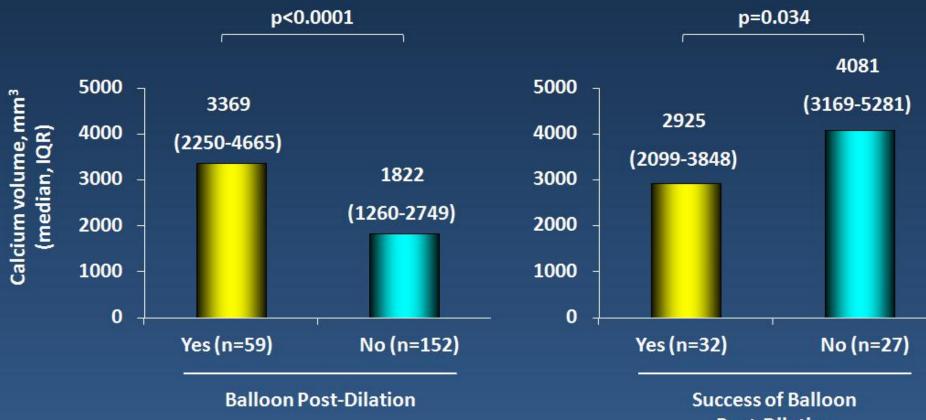
Objectives This study sought to evaluate the predictive factors, effects, and safety of balloon postdilation (BPD) for the treatment of significant paravalvular aortic regurgitation (AR) following transcatheter aortic valve implantation (TAVI).

Background Very few data exist on BPD following TAVI with a balloon-expandable valve.

Methods A total of 211 patients who underwent TAVI with a balloon-expandable valve were included. BPD was performed after TAVI if paravalvular AR \geq 2 was identified by transesophageal echocardiography. Clinical events and echocardiographic data were prospectively recorded, and median follow-up was 12 (6 to 24) months.


Results BPD was performed in 59 patients (28%) leading to a reduction in at least 1 degree of AR in 71% of patients, with residual AR <2 in 54% of the patients. The predictors of the need for BPD were the degree of valve calcification and transfermoral approach, with valve calcification volume >2,200 and >3,800 mm³ best determining the need for and a poor response to BPD, respectively. Patients who underwent BPD had a higher incidence of cerebrovascular events at 30 days (11.9% vs. 2.0%, p = 0.006), with most (83%) events within the 24 h following the procedure occurring in patients who had BPD. No significant changes in valve area or AR degree were observed at follow-up in BPD and no-BPD groups.

Conclusions BPD was needed in about one-fourth of the patients undergoing TAVI with a balloonexpandable valve and was successful in about one-half of them. A higher degree of valve calcification and transfermoral approach predicted the need for BPD. BPD was not associated with any deleterious effect on valve function at mid-term follow-up, but a higher rate of cerebrovascular events was observed in patients who had BPD. (J Am Coll Cardiol Intv 2012;00:000) © 2012 by the American College of Cardiology Foundation


CARDIOVASCULAR RESEARCH F O U N D A T I O N A Passion for Innovation

COLUMBIA UNIVERSITY MEDICAL CENTER

30-Day Cerebrovascular Events (stroke: 4.3%)

Valve calcium volume according to balloon post-dilatation and to the success of balloon post-dilation

Post-Dilation

Conclusions

- Post-procedural AR, was more common after TAVR (mild-mod-severe ~50%) and did not change significantly during follow-up
- Even mild post-procedural AR (paravalvular and total AR) was associated with increased subsequent mortality
- Valve in valve is a potential treatment option for AR due to malpositioning
- Balloon post-dilatation improves regurgitant volume but may result in increased neurologic events

