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Hypothermia Therapy
Neurological and Cardiac Benefits

Cédric Delhaye, MD, Michael Mahmoudi, MD, PHD, Ron Waksman, MD

Washington, DC

Due to its protective effect on the brain and the myocardium, hypothermia therapy (HT) has been extensively
studied in cardiac arrest patients with coma as well as in patients presenting with acute myocardial infarction
(MI). In the setting of cardiac arrest, randomized studies have shown that HT decreases mortality and improves
neurological outcomes. Subsequent guidelines have therefore recommended cooling (32°C to 34°C) for 12 to
24 h in unconscious adult patients with spontaneous circulation after out-of-hospital cardiac arrest due to ventricular
fibrillation. Observational studies have also confirmed the feasibility of this therapy in clinical practice and support its
early application in patients with nonventricular fibrillation cardiac arrest and in post-resuscitation circulatory shock. In
patients with acute MI, available clinical evidence does not yet support HT as the standard of care, because no study
to date has shown a clear net benefit in such a cohort. After a brief review of the mechanisms of action for HT, we
provide a review of the clinical evidence, cooling techniques, and potential adverse effects associated with HT in the
setting of post-cardiac arrest patient and acute MI. (J Am Coll Cardiol 2012;59:197–210) © 2012 by the
American College of Cardiology Foundation
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Mild hypothermia therapy (HT), defined as body temper-
ature between 32°C and 35°C, has been examined in a
multitude of brain injury models, such as ischemic and
hemorrhagic stroke, spinal cord injury, hepatic encephalop-
athy, traumatic brain injury, and neonatal hypoxic-ischemic
encephalopathy. Randomized clinical trials (RCTs) in the
setting of cardiac arrest (1,2) and neonatal hypoxic-ischemic
encephalopathy (3–5) have in turn validated the clinical
applicability of such therapy. Due to its potential myocardial
protective properties, the role of HT might well extend
beyond its neuroprotective properties in patients presenting
with coma after a cardiac arrest to patients presenting with
an acute myocardial infarction (MI).

Mechanisms of Action of Hypothermia

Neuroprotection. Experimental and clinical evidence have
confirmed the neuroprotective effects of hypothermia. The
mechanism(s) underlying the beneficial properties of HT
are multifactorial and include reductions in the cerebral
metabolism of glucose and oxygen consumption (6–8);
pathways mediating accumulation of excito-toxic neu-
rotransmitters, intracellular acidosis, and the influx of intra-
cellular calcium and oxygen free radical production (9,10);
alterations in the expression of “cold shock proteins” (10–12);
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reduction in brain edema (13,14); minimizing the risk of
thrombosis; and reducing the risk of epileptic activities
through electrical stabilizing properties (10).
Cardioprotection. A number of preclinical studies have
demonstrated the beneficial effects of HT in reducing
infarct size, with the greatest benefit being derived when the
heart is cooled before reperfusion, thereby indicating a
potential correlation between the degree of myocardial
salvage and the myocardial temperature at the time of
reperfusion (15–23). Although the mechanisms by which
HT enhances myocardial protection have not been as
thoroughly elucidated as in the brain, a number of potential
explanations have been proposed. These include reducing
the metabolic demand of the myocardium at risk (24),
enhancing cellular membrane integrity through increased
adenosine triphosphate preservation (24,25), enhancing mi-
tochondrial membrane stability (26–29), and improvements
in the myocardial microvasculature blood flow (22,30–32).

HT and Cardiac Arrest

Randomized controlled clinical trials. After observational
clinical studies suggesting a beneficial effect for HT in
survivors of cardiac arrest (33), 2 pivotal RCTs have provided
the definitive evidence for such an efficacy (Table 1) (1,2). In
he first study (1), HT was shown to be associated with
mprovements in neurological outcome and survival at 6

onths in survivors of cardiac arrest due to ventricular
brillation (VF) or pulseless ventricular tachycardia. In the
econd study (2), HT initiated in the ambulance was again

ound to be associated with improvements in neurological
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outcome as compared with nor-
mothermia. A subsequent meta-
analysis concluded that the number-
needed-to-treat to allow 1 additional
patient to leave the hospital with
improvements in neurological out-
come was 6 (95% confidence in-
terval: 4 to 13) (34). The Interna-
tional Liaison Committee on
Resuscitation recommended HT
(32°C to 34°C for 12 to 24 h), on
the basis of such results, in uncon-
scious adult patients with sponta-
neous circulation after out-of-
hospital cardiac arrest when the
initial rhythm is VF (class IIa).

Cooling was also recommended for survivors of non-VF
cardiac arrest patients (class IIb) (35,36). These recommenda-
tions have also been incorporated in the more recently pub-
lished resuscitation guidelines (37,38).
Observational studies. The feasibility and favorable neu-
ological outcomes associated with HT have also been
onfirmed in a multitude of observational studies (Table 2)

(39–63). In a retrospective study of unselected comatose
survivors of all rhythm cardiac arrest patients, Holzer et al.
(46) demonstrated that HT was associated with better
survival and improvements in neurological outcome at 1
month. The ERC HACA (European Resuscitation Coun-
cil Hypothermia After Cardiac Arrest) registry of 650
comatose patients after all rhythm cardiac arrest has also
confirmed that HT led to a higher discharge survival rate
and improvements in neurological outcome (40). Simi-
larly, the Hypothermia Network Registry of 986 all
rhythm cardiac arrest patients also confirmed the clinical
efficacy of HT in this cohort of patients (51).
HT in non-VF cardiac arrest. Although the feasibility of
HT in non-VF cardiac arrest patients has been confirmed
(53,64), no study to date has shown either a survival or a
neurological benefit with HT in this cohort of patients
(62,65). One potential reason for this observation might be
the poor prognosis associated with asystole, regardless of the
therapeutic measure undertaken (66).
HT in post-resuscitation circulatory shock. Animal data
have suggested a beneficial effect of HT in cardiogenic
shock mediated through modulations in inflammation, ap-
optosis, and remodeling (67,68). In humans, although
post-resuscitation shock is a relatively frequent complication
of cardiac arrest (66), such patients have been excluded from
RCTs, and the results of observational studies have been
hampered by variations used to define “shock” and lack of
report on outcomes in this subset of patients (Table 2). In 2
retrospective studies focusing on patients presenting with
post-resuscitation shock, HT did not adversely affect the
expected outcome (47,61).
HT and emergency coronary intervention. Several obser-

Abbreviations
and Acronyms

HT � hypothermia therapy

MI � myocardial infarction

PCI � percutaneous
coronary intervention

RCT � randomized clinical
trials

ROSC � return of
spontaneous circulation

STEMI � ST-segment
elevation myocardial
infarction

VF � ventricular fibrillation
vational studies have shown that combining HT with
immediate coronary angiography � percutaneous coronary
intervention (PCI) is feasible and might improve the out-
come of comatose patients who have been successfully
resuscitated from cardiac arrest due to ST-segment eleva-
tion myocardial infarction (STEMI) (49,55,58,59). In 1 of
the earliest studies to address this combination, Sunde et al.
(58) showed an improvement in neurological outcomes and
survival at discharge after implementation of a standardized
post-resuscitation care protocol including HT. In a prospec-
tive study with historical control that included 72 comatose
patients successfully resuscitated from VF related to
STEMI and who needed primary PCI, Knafelj et al. (49)
reported greater 6-month survival and improvements in
neurological outcomes in patients receiving HT without
adversely affecting the symptom-to-balloon time. Other
studies have also demonstrated that implementing such a
strategy does not adversely influence the door-to-balloon
time (59).

HT and Acute MI

Animal models of MI have suggested that HT might be an
effective method in reducing infarct size (15,17,69,70). In
humans, several studies have examined HT as a novel
method to reduce myocardial injury in patients with
STEMI (Table 3) (71–76). Upon establishment of the
feasibility of such therapy by Dixon et al. (71), the
COOL-MI (Cooling as an Adjunctive Therapy to Percu-
taneous Intervention in Patients with Acute Myocardial
Infarction) and ICE-IT (Intravascular Cooling Adjunctive
to Percutaneous Coronary Intervention) trials (72,77) were
designed to address whether or not HT could decrease
infarct size as measured by single-photon emission com-
puted tomography imaging at 30 days in the STEMI
population. However, neither study demonstrated such a
benefit—although in patients presenting with anterior
STEMI and who had achieved a core temperature �35°C,
a favorable trend was observed. Furthermore, a sub-analysis
of the ERC HACA trial (78) failed to show any significant
impact of HT on such parameters as creatine kinase,
creatine kinase myocardial-band, or electrocardiogram eval-
uation. Interestingly, patients in the HT group with a
shorter time to target temperature (�8 h) had significantly
reduced levels of creatine kinase and creatine kinase
myocardial-band, suggesting that early cooling rather than
its duration might be a critical factor in achieving infarct size
reduction (15,17,22,23,69,70).

Both experimental and clinical studies seem to suggest
that, in addition to early cooling, the optimal cardioprotec-
tive effects of hypothermia might be derived at core tem-
peratures �35°C (15,22,23,72,77). Such a hypothesis has
received additional support from Götberg et al. (76), who
demonstrated, in patients undergoing primary PCI for
STEMI, not only that a core body core temperature of
�35°C could be achieved without delaying the door-to-

balloon time but that it was also associated with a 38%



Randomized Controlled Trials of Hypothermia Therapy in Cardiac ArrestTable 1 Randomized Controlled Trials of Hypothermia Therapy in Cardiac Arrest

First Author (Ref. #)

Period of Inclusion
Primary Endpoint Number

of Patients, H vs. C
Initial Rhythm Hemodynamic

Status at Inclusion (If Reported) Method of Cooling

Target Temp/
Cooling Duration/
Rewarming Time

Favorable Neurological
Outcome*

H vs. C Survival, H vs. C
Adverse Outcomes,

H vs. C

HACA study 2002 (1) Mar 1996–Jan 2001
Favorable neurological

outcome within 6
months

136 vs. 137

VF/VT
Evidence of hypotension �30 min

after ROSC excluded

External cooling (including cooling
mattress)

Time from ROSC to �34°C: 8 h

32°C–34°C
24 h
Passive �6 h

55% vs. 39% at
6 months,
p � 0.009

OR: 1.40, 95% CI:
1.80–1.81

59% vs. 45% at
6 months,
p � 0.02

OR: 1.35, 95% CI:
1.72–1.05

No difference

Bernard (2) Sep 1996–Jun 1999
Favorable neurological

outcome at discharge
43 vs. 34

VF
Cardiogenic shock excluded

External cooling
Passive cooling started in the field

by paramedics
Time from ROSC to 33.5°C:
2.5 h

33°C
12 h
Active within 6 h

49% vs. 26% at
discharge, p � 0.04

Adjusted OR: 5.25,
95% CI: 1.47–18.76

49% vs. 32% at
discharge

No difference except
lower cardiac
index, higher
systemic vascular
resistance and
more hyperglycemia
in H group

Kim (84) Nov 2004–Feb 2006
In the field H vs. C:
Efficacy of in-field cooling to

decrease the hospital
arrival core temp

63 vs. 62

All rhythm
Post-resuscitated hemodynamically

unstable patients excluded

In the field: cold infusion after
resuscitation

Decrease in temp of 1.24°C in
cold infusion vs. 0.1°C in
control group, p � 0.01

In-hospital cooling rate differed in
both groups

33°C
24 h if cooling was

continued
Unknown

— 33% vs. 29% at
discharge

VF: 66% vs. 45%
at discharge

Asystole/PEA:
6% vs. 20% at

discharge

No difference

Castren PRINCE trial
(96)

Nov 2008–Jan 2009
In the field H vs. C:
Safety, feasibility and

cooling efficacy of pre-
hospital intra arrest
cooling using intra-
nasal cooling device

93 vs. 101

All rhythm In the field: intranasal cooling
system

Time to target tympanic
temperature of 34°C:
102 vs. 282 min, p � 0.03

Time to target core temperature
of 34°C: 155 vs. 284 min,
p � 0.13

Patients in both groups were
cooled upon hospital arrival

Unknown At discharge:
34% vs. 21%, p � 0.21
For CPR within 10 min,

43% vs. 18%,
p � 0.03

At discharge:
44% vs. 31%,

p � 0.26
For CPR within

10 min, 56% vs.
30%, p � 0.04

18 device-related
adverse events:

Nasal discoloration:
n � 13

Epistaxis: n � 3
Peri-oral bleeding:

n � 1
Peri-orbital

emphysema:
n � 1

*Favorable neurological outcome was defined by a Cerebral Performance Categories scale of 1 (good recovery) or 2 (moderate disability) in the HACA (Hypothermia After Cardiac Arrest) study, by discharge home or to a rehabilitation facility in the Bernard et al. (2) study,
and by the neurologically intact survival for the PRINCE (Pre-ROSC IntraNasal Cooling Effectiveness) trial.

C � control subjects; CI � confidence interval; CPR � cardiopulmonary resuscitation; H � hypothermia; m � months; MI � myocardial infarction; OR � odds ratio; PEA � pulseless electrical activity; ROSC � recuperation of spontaneous circulation; temp � temperature;
VF � ventricular fibrillation; VT � ventricular tachycardia.
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Nonrandomized Clinical Studies of Hypothermia Therapy in Cardiac ArrestTable 2 Nonrandomized Clinical Studies of Hypothermia Therapy in Cardiac Arrest

First Author (Ref. #)

Study Type
Period of Inclusion
Number of Patients

H vs. C

Initial Rhythm, H vs. C
Hemodynamic Status

at Inclusion
(If Reported), H vs. C Method of Cooling

Target Temp/
Cooling Duration

Favorable Neurological
Outcome*

H vs. C
Survival
H vs. C

Adverse Outcomes
H vs. C

Al-Senani (39) Prospective (no control)
Mar 2001–Sep 2002
13

Unknown ECD 33°C
24 h

38% at 30 days 70% at 30 days —

Kliegel (48) Prospective (no control)
Jun 2003–Apr 2004
26

Unknown
Cardiogenic shock

excluded

Cold infusion � ECD 33°C
24 h

50% at 6 months 54% at 6 months —

Holzer (46) Retrospective
Aug 1991–Nov 2004
97 vs. 941

VF: 71% vs. 46% ECD � cold infusion 33°C
24 h

53% vs. 34% at 30 days,
p � 0.001

Adjusted OR: 2.56,
95% CI: 1.57–4.17

69% vs. 50% at 30 days,
p � 0.001

Adjusted OR: 1.96,
95% CI: 1.19–3.23

No difference except
for bradycardia:
15% vs. 3%,
p � 0.025

Oddo (53) Retrospective
H � Jun 2002–Dec 2004
C � Jun 1999–May 2002
55 vs. 54

VF: 77% vs. 80%
Asys/PEA: 23% vs. 20%
Shock on admission:
31% vs. 26%

ExC (including
cooling mattress)

33°C
24 h

At discharge:
Overall population:

47% vs. 20%
VF group: 56% vs. 26%,

p � 0.01
Non-VF group: 17% vs. 0%,

p � NS
Cardiogenic shock on

admission: 29% vs. 0%,
p � 0.03

At discharge
Overall population:

51% vs. 33%
VF group: 60% vs. 44%,

p � 0.28
Non-VF group: 17% vs. 9%,

p � NS
Cardiogenic shock

on admission:
29% vs. 21%,
p � NS

No difference

Busch (44) Retrospective
H � Jun 2002–Nov 2003
C � Jan 2001–Jun 2002
27 vs. 34

VF: 74% vs. 62%
Cardiogenic shock

excluded

ExC 33°C
12–24 h (�10 h)

41% vs. 26% at discharge,
p � 0.21

59% vs. 32% at discharge,
p � 0.05

No difference except
for hypokalemia:
81% vs. 33%,
p � 0.01 and
insulin resistance:
19% vs. 0%,
p � 0.02

Scott (56) Prospective (no control)
Aug 2003–Sep 2005
49

Unknown Cold infusion � ExC
(� garment-type

cooling device)

33°C
24–36 h

33% at discharge 39% at discharge —

Haugk (45) Prospective (no control)
Jul 2004–Aug 2005
27

Unknown
Patients with

hypotension
excluded

ExC (including
garment-type
cooling device)

33°C
24 h

33% at 6 months 52% at 6 months —

Arrich (40) Prospective/control
subjects in same period

May 2003–Jun 2005
462 vs. 123

VF/VT: 68% vs. 37%
Asys/PEA: 27% vs. 59%

ECD (75%)
Or
ExC (including

cooling blanket)
� cold infusion
(25%)

33°C
24 h

Overall population:
45% vs. 32% at discharge,

p � 0.02
Non-VF group:
19% vs. 19% at discharge,

p � 0.98

Overall population: 57% vs. 32%
at discharge, p � 0.01

Non-VF group: 35% vs. 19%
at discharge, p � 0.02

—

Sunde (58) Prospective/historic
control subjects

IG† vs. C
IG � Sep 2003–May 2005
C � Feb 1996–Feb 1998
58 vs. 61

VF: 90% vs. 84%
Comatose after cardiac

arrest: 85% vs. 90%,
Only 40 in 52

comatose patients
was cooled in IG

ECD and/or ExC
(including
garment-type
cooling device)
� cold infusion

33°C
24 h

56% vs. 26% at discharge,
p � 0.01

56% vs. 31% at discharge,
p � 0.01
Same at 1 year

No difference

Continued on next page
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ContinuedTable 2 Continued

First Author (Ref. #)

Study Type
Period of Inclusion
Number of Patients

H vs. C

Initial Rhythm, H vs. C
Hemodynamic Status

at Inclusion
(If Reported), H vs. C Method of Cooling

Target Temp/
Cooling Duration

Favorable Neurological
Outcome*

H vs. C
Survival
H vs. C

Adverse Outcomes
H vs. C

Laish-Farkash (50) Prospective (no control)
Feb 2002–Sep 2006
51

VF
Cardiogenic shock

excluded

ExC (including
garment-type
cooling device)
� cold infusion

32°C–34°C
24 h

61% at discharge 63% at discharge —

Hovdenes (47) Retrospective (no control)
Apr 2003–Apr 2005
50
Comparison IABP (n � 23)

vs. no IABP (n � 27)

VF
Shock on admission:
74%
IABP: 46%

ExC (including
garment-type
cooling device)
� cold infusion

32°C–34°C
24 h

68% at 6 months
Comparison IABP vs.

no IABP:
61% vs. 74%, p � NS

82% at 6 months
Comparison IABP vs. no IABP:
74% vs. 89%, p � 0.17

—

Belliard (42) Prospective/historic
control subjects

H � Jan 2003–Dec 2005
C � Jan 2000–Dec 2002
32 vs. 36

VF
Hypotension after

resuscitation: 34%
vs. 22%

ExC 32°C–34°C
24–48 h

41% vs. 17% at discharge,
p � 0.02

56% vs. 36% at discharge,
p � 0.04

No difference

Knafelj (49) Prospective/historical
control subjects

H � Nov 2003–Dec 2005
C � Jan 2000–Oct 2003
40 vs. 32

VF related to STEMI
who needed

PPCI

Cold infusion � ExC 32°C–34°C
24 h

55% vs. 16% at discharge,
p � 0.01

Same at 6 months

75% vs. 44% at discharge,
p � 0.01

Same at 6 months

More positive
tracheal
aspiration in
H group (93% vs.
72%, p � 0.04)

Trend to more
antimicrobial
treatment (90%
vs. 72%, p � 0.07)

Oksanen (54) Prospective
2004–2005
407

VT/VF ExC or ECD or both
methods

Unknown — 55% at 6 months —

Wolfrum (59) Prospective/historical
control subjects

H � 2003–2004
C � 2005–2006
16 vs. 17

Rhythm unknown but
cardiac arrest due to
STEMI who needed
PPCI

ExC (including
cooling mattress)
� cold infusion

32°C–34°C
24 h

69% vs. 47% at 6 months,
p � 0.30

75% vs. 65% at 6 months,
p � 0.71

Trend toward more
overall bleeding
in H group: 56%
vs. 24%, p � 0.08

More transfusions in
H group: 38% vs.
6%, p � 0.04

More infections:
62% vs. 24%,
p � 0.04

Oddo (52) Prospective (no control)
Dec 2004–Oct 2006
74

VF: 51%
Asys/PEA: 49%
Post-resuscitation

shock: 46%
Cardiogenic shock:

14%

ExC (including
cooling mattress)

33°C
24 h

32% at discharge
VF group: 55%
Non-VF group: 8.3%
Post-resuscitation shock: 26%

39% at discharge
VF group: 60%
Non-VF group: 17%
Post-resuscitation shock: 35%

—
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ContinuedTable 2 Continued

First Author (Ref. #)

Study Type
Period of Inclusion
Number of Patients

H vs. C

Initial Rhythm, H vs. C
Hemodynamic Status

at Inclusion
(Ff Reported), H vs. C Method of Cooling

Target Temp/
Cooling Duration

Favorable Neurological
Outcome*

H vs. C
Survival
H vs. C

Adverse Outcomes
H vs. C

Storm (63) Retrospective/historical
control subjects

H � Jan 2006–Jan 2007
C � 2003–2005
52 vs. 74

VF/VT: 65% vs. 58%
Asys/PEA: 35% vs. 42%

Cold infusion �ExC
(including
garment-type
cooling device)

33°C
24 h

61% vs. 23% at discharge,
p � 0.01

At discharge:
71% vs. 58%, p � 0.19

At 1 yr:
55% vs. 31%, p � 0.013

No difference

Schefold (55) Prospective/historical
control subjects

H � Dec 2005–Dec 2006
C � 2002 to 2005
31 vs. 31

All rhythm due to
acute MI

VF: 81% vs. 81%
Asys/PEA: 19% vs. 19%

ExC (including
cooling blanket)
� cold infusion

33°C
24 h

61% vs. 19% at discharge,
p � 0.01

68% vs. 68% at discharge,
p � NS

No difference

Bro-Jeppesen (43) Prospective/historical
control subjects

H � Jun 2004–May 2006
C � Jun 2002–May 2004
79 vs. 77

VT/VF: 66% vs. 73% ExC (including
garment-type
cooling device)
� cold infusion

33°C
24 h

In VT/VF patients:
63% vs. 48% at discharge

In VT/VF patients:
65% vs. 68% at discharge
57% vs. 56% at 30 months

Bradycardia, recurrent
VT more common
in H group

Nielsen (51) Prospective (no control)
Oct 2004–Oct 2008
986

VT/VF: 70%
Asys/PEA: 29%
Cardiogenic shock:

18%
Intra-aortic balloon

pump: 12%

ExC (� device) and/or
cold infusion
and/or ECD

33°C
24 h

44% at discharge
VT/VF: 53%
Asys/PEA: 22%
46% at 6–12 months
VT/VF: 56%
Asys/PEA: 22%

56% at discharge
VT/VF: 67%
Asys/PEA: 30%
46% at 6–12 months
VT/VF: 61%
Asys/PEA: 25%

—

Ferreira (60) Retrospective/historical
control subjects

H � Jan–Sep 2005
C � Oct–Dec 2006
9 vs. 26

VT/VF: 96% vs. 94%
Asys: 4% vs. 6%
Shock under supporting

measures excluded

ExC (n � 25)
Oct–Feb 2006
or
ECD (n � 24)
Mar–Dec 2006

33°C
24 h

51% vs. 19% at discharge,
p � 0.01

No difference between
2 cooling methods

67% vs. 42% at discharge,
p � 0.04

No difference between
2 cooling methods

—

Don (62) Retrospective/historical
control subjects

H � Nov 2002–Dec 2004
C � Jan 2000–Nov 2002
204 vs. 287

VT/VF: 39% vs. 32%
Asys/PEA: 60% vs. 66%

ExC (including
cooling blanket
or garment-type
cooling device)

32°C–34°C
24 h

VT/VF: 35% vs. 15%
at discharge, p � 0.01

Adjusted OR: 2.62,
95% CI: 1.10–6.27

Asys/PEA:
11% vs. 9% at discharge,

p � 0.44
Adjusted OR: 0.92,

95% CI: 0.37–2.32

VF group: 54% vs. 39%
at discharge, p � 0.04

Adjusted OR: 1.71,
95% CI: 0.85–3.46

Non-VF group:
21% vs. 19% at discharge,

p � 0.65
Adjusted OR: 0.82,

95% CI: 0.41–1.60

—

Skulec (61) Retrospective
Nov 2002–Nov 2006
56
Comparison shock

(n � 28) vs. no shock
(n � 28):

VF: 60%
Asys/PEA: 36%
Cardiogenic shock:

50%

ExC � cold infusion 33°C
12 h

Overall population: 53%
Shock vs. no shock:

anytime during hospital
stay: 68% vs. 82%,
p � 0.35,
at discharge: 39% vs.
71%, p � 0.031

Overall population: 62%
Shock vs. no shock:

43% vs. 79% at discharge,
p � 0.013

No difference
between shock
and no shock in
terms of major
bleeding,
infection and
malignant
arrhythmia

Continued on next page
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ContinuedTable 2 Continued

First Author (Ref. #)

Study Type
Period of Inclusion
Number of Patients

H vs. C

Initial Rhythm, H vs. C
Hemodynamic Status

at Inclusion
(If Reported),

H vs. C Method of Cooling
Target Temp/

Cooling Duration
Favorable Neurological

Outcome* H vs. C
Survival
H vs. C

Adverse Outcomes
H vs. C

Batista (41) Retrospective
H � 2002–2009
90
Comparison PCI (n � 20)

vs. no PCI (n � 70)

VF/VT: 47%
Asys/PEA: 53%
Shock on admission:

24%

ExC (� device) 32°C–34°C
24 h

24% at discharge 29% at discharge
VT/VF: 37%
PEA/Asys: 22%
Comparison PCI vs. no PCI:

60% vs. 70%, p � 0.4

No difference
between PCI and
no PCI group in
terms of
arrhythmia

Storm (57) Retrospective/historical
control subjects

H � 2005–2007
C � 2002–2004
107 vs. 98

Rhythm unknown ExC (including
garment-type
cooling device)

Unknown
24 h

60% vs. 24% at discharge,
p � 0.01

55% vs. 34% at 2 yrs,
p � 0.03

Adjusted HR: 1.43,
95% CI: 2.2–1.04

—

Dumas (65) Prospective/control
subjects in same period

Jan 2000–Dec 2009
718 vs. 427

VF/VT: 63% vs. 59%
Asys/PEA: 36% vs. 41%
Post-resuscitation

shock: 37%

ExC (forced cold air) 32°C–34°C
24 h

VF/VT:
44% vs. 29% at discharge,

p � 0.001
Adjusted OR: 1.90,

95% CI: 1.18–3.06
Asys/PEA:
15% vs. 17% at discharge,

p � 0.48
Adjusted OR: 0.71,

95% CI: 0.37–1.36

— VT/VF:
More infections in
H group: 60% vs.
44%, p � 0.001

Asys/PEA:
More infections in
H group: 57% vs.
39%, p � 0.001

All patients were reported comatose after successful resuscitation from cardiac arrest, apart from Sundle 2007, who included patients with sustained ROSC in the emergency department (ED) after out-of-hospital cardiac arrest of cardiac etiology with or without coma.
*Neurological function were assessed by those Cerebral Performance Categories scale (favorable neurological outcome � Cerebral Performance Categories scale 1 [good recovery] or 2 [moderate disability]) except for 5 studies, which used Glasgow outcome score (Al-Senami
et al., Belliard et al.), Glasgow outcome coma scale (Scott et al.), modified Rankin Scale (Batista et al.), and their own neurological outcome scale (Don et al.). †Protocol including: hypothermia therapy; percutaneous coronary intervention (PCI) for ST-segment elevation
myocardial infarction (STEMI); and controls of hemodynamic status, blood glucose, ventilation, and seizures.

Asys � asystole; ECD � endovascular cooling device; ExC � external cooling device; HR � hazard ratio; IABP � intra-aortic balloon pump; IG � intervention group; MAP � mean arterial pressure; PPCI � primary percutaneous coronary intervention; SBP � systolic blood
pressure; other abbreviations as in Table 1.
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reduction in the infarct size as assessed by cardiac magnetic
resonance imaging (CMRI). Although relatively small in
sample size, this was the first such study demonstrating a
beneficial effect of HT in this population. The achievement
of a body core temperature �35°C and the use of CMRI,
currently the “gold-standard” for infarct assessment (79–81),
have been proposed as potential explanations for the ob-

Clinical Studies of Hypothermia Therapy in Patients With STEMITable 3 Clinical Studies of Hypothermia Therapy in Patients W

First Author (Ref. #)

Study Type
Period of Inclusion
Number of Patients

H vs. C Indications Metho

Dixon COOL-MI Pilot
(71)

RCT, primary endpoint:
MACE (death, re-MI,
TVR)

Feb–Jul 2001
21 vs. 21

STEMI �6 h from
the symptom
onset/PPCI

Awake patients

Endovascu
started

Shivering s
skin wa
buspiron
meperid

O’Neill COOL-MI trial
TCT (77) (abstract)

RCT, primary endpoint:
SPECT infarct size

177 vs. 180

STEMI �6 h from
the symptom
onset/PPCI

Awake patients

Endovascu
started

Shivering s
skin wa
buspiron
meperid

Grines ICE-IT TCT
(72) (abstract)

RCT, primary endpoint:
SPECT infarct size

114 vs. 114

STEMI �6 h from
the symptom
onset/PPCI

Awake patients

Endovascu
started

Kandzari LOWTEMP
study (75)

Prospective/no control
Oct 2002–Apr 2003
18

STEMI �6 h from
the symptom
onset/PPCI

Awake patients

Endovascu
Shivering s

oral bus
meperid
warmin

Ly NICAMI study (74) Prospective/no control
Mar–Sep 2003
9

STEMI �6 h from
the symptom
onset/PPCI

Awake patients

External co
type coo

Shivering s
meperid

Götberg RAPID-MI-
ICE trial (76)

RCT, primary endpoint:
safety and
feasibility of
inducing
hypothermia
therapy before
reperfusion

Mar–Oct 2009
9 vs. 9

STEMI �6 h from
the symptom
onset/PPCI

Awake patients

Cold infusi
endovas
device s

Shivering s
skin wa
buspiron
meperid

AUC � area under the curve; cath � catheterization; CHF � cardiac heart failure; CK � creatinine kin
single-photon emission computed tomography; TVR � target vessel revascularization; other abbre
served benefits. In contrast to single-photon emission com-
puted tomography, which has been used in the majority of
the aforementioned studies, CMRI has the advantage that it
provides information not only on geometrical information
such as ventricular volume but also segmental wall motion
abnormalities and left ventricular function as well as remod-
eling.

However, despite such encouraging results, the optimal

EMI

ooling
Target Temp/

Cooling Duration
Outcomes

H vs. C
Adverse Outcomes

H vs. C

ling device
lab or ED
sed by
oral
IV

33°C
3 h after

reperfusion

MACE at 30 days:
0% vs. 10%, p � NS
SPECT infarct size at

30 days: 2% vs. 8%
of LV, p � 0.8

No difference

ling device
lab or ED
sed by
oral
IV

33°C
3 h

Infarct size at 30 days:
17.9% vs. 19.2% of
LV, p � 0.92

MACE (death, re-MI,
TVR) at 30 days:
6.2% vs. 3.9%,
p � 0.45

In anterior MI with
temp �35°C at
reperfusion, infarct
size: 9.3% vs.
18.2%, p � 0.05

More incidence of
shock in the
H group

Trend toward
higher rate of
vascular
bleeding, deep
venous
thrombosis, and
pulmonary
edema in
H group

ling device
lab or ED

33°C
6 h

Infarct size at 30 days:
13.5% vs. 14.2%,

p � 0.77
MACE (death, re-MI,

stroke, severe CHF,
cardiogenic shock)
at 1 yr: 13.7% vs.
10%, p � 0.53

In anterior MI with
temp �35°C at
reperfusion, infarct
size:

12.9% vs. 22.7%,
p � 0.09

Trend toward
higher rate of
“any general
adverse effect”

ling device
sed by
and/or IV
skin

32 to 34°C
� 6 h

SPECT infarct size at
30 days: 4% of LV

—

garment-
evice)
sed by IV

34.5°C
3 h at target

SPECT infarct size at
30 days: 23% of LV

—

cooling
in cath lab
sed by
oral
IV

33°C
3 h

Door-to-balloon time
43 vs. 40 min,
p � 0.12

Infarct size normalized
to myocardium at
risk assessed by
cardiac magnetic
resonance at
4 days: 29.8% vs.
48.0%, p � 0.041

No difference

� left ventricle; MACE � major adverse cardiac event(s); RCT � randomized control trial; SPECT �

s as in Tables 1 and 2.
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require an adequately powered RCT, and until such data
become available, the utility of HT will remain conjectural
and cannot be recommended in routine, daily clinical
practice for this cohort of patients.

Cooling Techniques

The currently available cooling methods have been largely
developed in the setting of post-cardiac arrest comatose
survivors and are detailed in the following text (82–96).
Cold infusion. The infusion of cold fluid has been shown
to be an effective technique to cool patients, especially for
the induction phase, rendering it a readily accessible strategy
in an out-of-hospital environment. Different protocols have
been proposed, such as the infusion of 30 ml/kg of ice-cold
(4°C) lactated Ringers solution intravenously over 30 min
(83) or the use of 500 to 2,000 ml of 4°C normal saline as
soon as possible after resuscitation (84). The latter protocol
has been validated in an RCT showing that cold infusion
initiated in the field is effective in lowering arrival hospital
temperature without adverse consequences in terms of blood
pressure, heart rate, arterial oxygenation, risk of pulmonary
edema or re-arrest (84). Although the cold fluid intravenous
infusion seemed to be effective, safe, and quick to induce
HT, it does not seem sufficient to be used alone for the
maintenance phase of HT and needs the additional use of
either external cooling techniques or endovascular cooling
devices (85,86).
External cooling techniques. External cooling therapy is a
simple, inexpensive, easy-to-implement technique achieved
with the application of ice packs to the groin, torso, axillae,
and neck and/or ice water-soaked towels and fanning. This
method can be considered for both the induction and
maintenance phases in the intensive care unit but suffers
from the inability to control the rate of de-cooling as well as
the extreme vigilance and experience required to prevent
over-cooling (87). A number of commercially available
cooling devices are now available, including cooling
mattresses, air-filled or water circulating cooling blan-
kets, and garment-type surface cooling devices (88). In
addition to a tight thermoregulatory capacity, these
devices have the distinct advantage of reducing the risk of
over-cooling during the induction phase, but they are
expensive and associated with rare adverse skin reactions
(skin erythema and mottling underneath the cooling
pads) (89).
Non-cold infusion endovascular cooling techniques. Ini-
tially developed to cool non-intubated awake patients, to
decrease cold discomfort and shivering, this method has
been used in the post-cardiac arrest setting over the last few
years (71,75). The endovascular cooling method consists of
an endovascular cooling catheter that is commonly inserted
percutaneously into the inferior vena cava and connected to
an automatically guided temperature cooling system. This

system extracts heat directly from the core and is not
impaired by thermoregulatory skin vasoconstriction (90). As
a consequence, the device allows the rapid and accurate
establishment of the target temperature, is effective in
maintaining a stable temperature after induction, and allows
an efficient control of the re-warming phase (60,91–93).
The main drawbacks limiting the routine use of this
technique are the requirement for central venous cannula-
tion, venous thrombosis, infection, and the cost of the
device. Furthermore, the U.S. Food and Drug Administra-
tion has also requested additional data from adequately
powered RCTs before recommending this device in induc-
ing mild hypothermia in comatose survivors of cardiac arrest
(brief Summary from the Circulatory System Devices Panel
Meeting, March 17, 2005). Although it is likely that the
various cooling techniques exert a class effect, this can only
be addressed in an RCT, but whether this can be achieved
in the current financial turmoil remains to be determined.
Novel cooling techniques and devices. A number of novel
noninvasive cooling techniques have been proposed as
alternatives to the more conventional techniques that are
currently available. These include iced saline gastric lavage
(94), cooling helmets (64), a total cold water immersion
system (95), as well as a trans-nasal cooling device (96) that
allows rapid induction of hypothermia to a core temperature
of 34°C. More novel cooling techniques are also being
considered in such studies as the CHILL-MI (Efficacy of
Endovascular Catheter Cooling Combined With Cold
Saline for the Treatment of Acute Myocardial Infarction)
trial sponsored by Philips Innercool.

Establishment of HT

The establishment of HT can be divided into 3 steps:
induction, maintenance, and re-warming phase (Fig. 1).

Complications of HT and Its Management

Hypothermia therapy is associated with a number of com-
mon physiological changes and potential complications
(Table 4) (10,88).
Shivering. Shivering is a natural physiological response to
hypothermia and can impede both the induction and
maintenance phases of HT by generating heat and increas-
ing the oxygen consumption and metabolic demands of
tissues (97). After peripheral vasoconstriction, shivering
seems to be the “last resort” response against cold as the core
temperature falls below 35.5°C.

Numerous pharmacological strategies have been devel-
oped to counteract such a response (90). In the post-cardiac
arrest setting, a widely adopted combination is that of
benzodiazepines for sedation, opioid analgesic, and systemic
neuromuscular blockade for muscle relaxation (2). By con-
trast, the combination of meperidine (� buspirone) and

skin warming to reduce the shivering threshold and avoid
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thermal discomfort has become the standard of care in
awake patients (71,74–77).
Cardiovascular manifestations of HT. The cardiovascular
effects of hypothermia are complex and have been summa-
rized in Table 4 (10,88). After the induction phase, HT
might be accompanied by bradycardia and an increase in
myocardial contractility (88,98). This reduction in heart
rate might in turn give rise to a reduction in cardiac
output, although this is not sufficiently severe enough to
lead to hemodynamic compromise (10,88). At this stage,
the hypothermia-induced vasoconstriction of peripheral
arteries and arterioles might increase the systemic vascu-
lar resistance and lead to a slight increase in the arterial
pressure (88,99,100). However, cardiac arrest patients
who have been cooled also develop a hypotensive re-
sponse as a consequence of the “post-cardiac arrest
syndrome,” which is characterized by myocardial dys-
function, a systemic ischemia-reperfusion response, as
well as a systemic inflammatory response (66). Further-
more, such a hypotensive response might be further
exacerbated by the underlying cause of cardiac arrest,
such as MI, ventricular arrhythmia, and the “cold diure-
sis” that can accompany HT through several mechanisms,
such as increased venous return due to peripheral vaso-
constriction, misbalance in diuretic hormones, and tubu-
lar dysfunction (10). Although HT has not been associ-
ated with the development of arrhythmia in RCTs or in
observational studies, persistent arrhythmia can develop
as a consequence of over-cooling (�32°), electrolyte

Figure 1 Hypothermia Therapy Flow Chart
imbalance, or tubular dysfunction (10).
Infection. Although HT might increase the rate of infec-
tion as a consequence of hypothermia-induced impairment
of cellular and humoral immunity (101), the message from
clinical studies does not provide a uniform answer as to
whether this hypothetical risk is of clinical significance.
Several studies have indicated an increased clinical risk
(46,59), whereas others have refuted such findings
(53,58,102).
Bleeding. Hypothermia might result in an increased risk of
bleeding as a result of impaired platelet function, throm-
bopenia, and impairment of the coagulation cascade (88).
However, such risks have not been observed in clinical
practice when HT has been used in isolation or in combi-
nation with PCI.
Alterations in drug metabolism. Hypothermia leads to a
slowing of a number of hepatic enzymes including the
cytochrome P450. Therefore, drugs that are metabolized by
the liver, such as sedative and neuromuscular blocking
agents, will require dose modification (103).

Conclusions

Hypothermia therapy should be considered, on the basis of
current evidence, as the standard of care in post-cardiac
arrest patients irrespective of the initial rhythm as recom-
mended by the guidelines. However, many unanswered
questions remain, such as the optimal duration of hypother-
mia, depth of cooling, rate of re-warming, best cooling

method, and cost effectiveness. In patients presenting with
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acute MI not associated with cardiac arrest, the available
evidence is currently not sufficiently strong enough to
recommend the routine implementation of HT into clinical

Common Physiological Changes Occurring During HypothermiaTable 4 Common Physiological Changes Occurring During Hypo

Body Systems Physiological Changes

Cutaneous and muscular Cutaneous vasoconstriction,
Shivering (�35°C–30°C)

Cardiovascular

HR Tachycardia (�36¡35°C, briefly for induction):
related to the increase in venous return to the heart

circulatory volume from peripheral to core compa
reflex increase in HR

might be exacerbated when patient is not sedated e
response not overcome

Bradycardia (�35°C):
further pronounced as core temperature drop (at 33

45 to 55 beats/min)
caused by a decrease in the rate of diastolic repolar

sinus node as well as prolongation of the duratio
and a mild decrease in the speed of myocardial i

Slight hypertension (�34°C, �10 mm Hg more):
due to hypothermia-induced vasoconstriction of perip

arterioles
Association with hypotension due to:

hypovelemia related to “cold diuresis”
post-cardiac arrest syndrome and its systemic inflam

Blood pressure Primary cardiac cause

Increase when HR decreased (mild HT)

Decrease when temp �30°C or artificial HR increased
or pacing)

Decrease in cardiac output (�35°C) in relation with HR

Increase central venous pressure (�35°C)

Myocardial
contractility

Mild arrhythmia in some patients (�32°C)
Tachyarrhythmias beginning by atrial fibrillation (�28°

Cardiac output Prolonged PR, QRS, and QT intervals (�33°C)

Rare Osborne’s J waves in mild hypothermia

Arrhythmia

ECG changes

Immunologic Impaired neutrophil function, suppression of pro-inflam
(�35°C)

Leukopenia and impaired leukocyte function (�33°C)

Hematologic Thrombopenia, thrombopathy
Impaired coagulation cascade (�35°C)

Metabolic Decrease metabolic demands (30°C–35 °C):
Decrease carbon dioxide production
Decrease oxygen consumption

Endocrine Insulin resistance (�35°C)

Gastrointestinal Decrease motility (�35°C)

Neurological Decrease consciousness (�30°C–31°C) in awake pati

Renal Increase diuresis, tubular dysfunction (�35°C)
Electrolytes loss and disorders (�35°C)

Drug metabolism Reduce in cytochrome P450 activity
Slowing of numerous liver enzymes
Usually reduced clearance of numerous medications su

neuromuscular blocking agents (�35°C)

Adapted, with permission, from Polderman et al. (10,83).
ECG � electrocardiographic; HR � heart rate; HT � hypothermia therapy.
practice.
Reprint requests and correspondence: Dr. Ron Waksman,
Washington Hospital Center, 110 Irving Street, Northwest, Suite
4B-1, Washington, DC 20010. E-mail: ron.waksman@medstar.net.
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Medical Treatment

Prevent bedsores
Prevent and treated shivering (pharmacologic treatment

� skin warming in awake patients)
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tion potentials
e conduction
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y response

None unless symptomatic

Wean vasopressors, administer analgesics and sedation
if needed

Avoiding or correcting hypovolemia by fluid administration

otropic drugs � Vasopressors

ase � Etiologic treatment

Prevent overcooling and avoid excessive heart stimulation

C)
None unless symptomatic or hypotensive

Prevent overcooling and electrolytes disorders

Re-warm slowly to avoid hyperkalemia in rewarming phase

None

y mediator release Take measure to prevent infection (especially pneumonia);
antibiotic prophylaxis

Usually none

Frequent blood gases (used temperature corrected value)
especially in induction phase and ventilation parameters
management

Insulin administration to maintain appropriate glucose level

Delayed feeding after HT

Monitor urine output and replace fluid if needed
Prevent and monitor blood electrolytes disorders

(usually every 6–8 h)

sedative or
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than increasing infusion dose
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rtmen

nough
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heral
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